

The Sellers Exoplanet Environments Collaboration

Dynamics of Upper Atmospheres of Exoplanets Around Active K to M dwarfs as a Factor Terrestrial of Habitability

A. Glocer, V. Airapetian, W. Danchi, S-B Kang

Project Overview

Motivation: Understanding exoplanetary habitability requires knowledge of how atmospheres evolve and respond to the penetration of XUV and energetic particle fluxes.

- Physical mechanisms involved in atmospheric dynamics driven by space weather events: energy deposition, chemical changes, and escape.
- The space weather conditions for close-in exoplanets around active stars encounter even more extreme conditions than Earth sees during strong CMEs.

Deliverable: Exoplanetary Ionospheric-Thermospheric Tool (E-ITT)

- Develop a 1D sophisticated exoplanetary multifluid ionosphere-thermosphere hydrodynamic model with extended chemistry.
- Determine the extreme space weather impacts on upper atmosphere of terrestrial type exoplanets.
- The first freely available generic ionosphere-thermosphere code for the exoplanetary community
- First model of this type hosted by GSFC/SEEC.

First Year Plan:

- Develop and test the modules for the E-ITT code
- Verify Module units against standard tests
- Validate against Earth case

Validation Case — Earth Ionosphere

- Validation of chemical module is conducted using Earth's ionosphere with only solar level photoionization included
- Solution is run to equilibrium to get steady state solution
- Ion profiles are shown on the left and reproduce nominal E and F region densities and composition
- Neutral profiles on right yield similar results to empirical expectaitons

Plan for next project year

- Implement radiative cooling and heat conduction modules.
- Integration tests for 1D ionosphere-thermosphere calculations for Earth under nominal and exoplanet like conditions.
- Start apply code to other terrestrial type planets.
- Begin planning for initial EMAC delivery

Module Implementation & Tests

Hydrodynamic Module

- Standard 2nd order HLL solver with flux limited reconstruction.
- Demonstrated to work with shock tube and blast wave unit tests.
- Multi-Species and Multi-Fluid Capabilities
- Three verifications cases are shown to demonstrate that the implementation works as expected.

Chemical Kinetics Module

Conductivity Module

Verification test shown for Earth ionosphere.